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Abstract

A statistical method for testing the equivalence between batches regarding their stability is proposed. This method
is based on the statistical linear model making use of a set of dummy variables to code the different batches. The
method gives us the point estimates of the slope and zero intercept of one batch, and the differences and the
corresponding confidence intervals with the remaining batches. In a second step, zero intercepts and slopes are
estimated for all the batches. Stability equivalence assessment is based on the comparison of the confidence intervals
for the differences between batches with the maximum difference allowable. The main advantages of this method are
the possibility to compare several batches, to disclose the equivalence stability criteria from the statistical hypothesis
about the equality between slopes, and the joint estimated of the residual variance whatever the decision to pool or
not the data from different batches. This method is illustrated with two data set; the first one, previously published
by other authors, involved six batches; the second data set include two batches and arose in a stability study of a

commercial human insulin conducted in our laboratory. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The Tripartite Guideline on stability testing of
new drug substances and products (US Pharma-
copoeia, 1995) states that shelf-life must be calcu-
lated as the time corresponding to the interception
of the lower 95% confidence interval of the regres-
sion line with the lowest acceptable limit for drug
content, usually 90% of the labeled amount;
moreover, stability testing must be conducted us-
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ing at least three different batches, the shelf-life of
the drug product being that of the less stable
batch. If no difference in slope or zero intercept is
statistically identified, data from the different
batches can be pooled; in this way, the degree of
freedom of the error variance is increased and the
length of the confidence interval will be reduced,
leading us to a more precise estimation of the
shelf-life.

The method suggested by the Tripartite Guide-
line is the testing hypothesis of no difference in
slope and zero time intercepts using the analysis
of covariance (ANCOVA). As long as the main
concern is to fail to detect an important difference
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between batches, i.e. type II error, it has been
suggested to conduct the hypothesis test with a
large significative level, say 0.25 (Bancroft, 1964).
However, this procedure has two drawbacks.
First, these statistical criteria are independent of
what can be considered as an important difference
in slope. Second, the chance to pool data from
different batches will be larger for poorly designed
studies (small number of experimental points,
large error variance) than for well designed stud-
ies. This approach can be used not only to assess
the equality of slopes but also to analyse more
complex studies (Fairweather et al., 1995).

Alternative methods for testing the equality of
slopes and intercepts have been proposed previ-
ously. Norwood (1995) proposed a two-level
nested ANCOVA model; in this model, differ-
ences between batches are interpreted both
through the fixed effect ‘initial potency’ and by
the random interaction term ‘batch by time’. Hy-
pothesis test about zero intercept and about the
interaction term allows us to test the convenience
of pooling the data, but not a specific rule regard-
ing maximum difference allowable in intercepts or
slopes. The method proposed by Chow and Shao
(1991) also consider the batches as a random
effect and, as the same authors stated, their
method is only suitable for post-marketing studies
in which a large number of batches with relatively
few points per batch are compared. Ruberg and
Stegeman (1991) specifically addressed the prob-
lem of fixing the maximum difference allowable;
these authors proposed fixing the power of the
test, 1 —f, being S the type II error, and to
compute the significance level needed to keep the
power of the test. To do so, the alternative hy-
pothesis must be established.

In this paper an alternative statistical method is
proposed; this method is based on the statistical
linear model and it includes a set of dummy
variables to code the different batches, leading us
to estimate the slope and zero intercept of one
batch as well as the differences with the remaining
batches and the corresponding confidence inter-
vals. In a second step, intercepts and slopes for
each batch can also be computed. This method is
illustrated with two data set: the first one corre-
sponding to data previously used by Ruberg and

Stegeman (1991); the second data set arises from a
room temperature stability test of one commercial
preparation of insulin conducted in our labora-
tory; it is well known that insulin must be stored
in the refrigerator, so, the analysis presented here
is for illustration purpose.

2. Methodology
2.1. Statistical model

The proposed statistical model is an extension
of the linear model which includes dummy vari-
ables to take into account the fixed effect of each
tested batch; such models have been described in
detail (Draper and Smith, 1981), and will be
shortly described in the following paragraphs.

Let’s assume that & batches have been included
in the trial, and that the number of observations
of each bath j is n;, j = 1...k; the total number of
observations is therefore N =ZXn, The introduc-
tion of the dummy variables into the usual linear
model lead us to split the model according to the
equation

k
y=Xpg+ ) z, X« (D)
Jj=1

In this equation y is the vector of experimental
observations y, of length N (/=1...N), being /
equal to Zn; |+ i; for the ith observation from
batch #j. The N by 2 matrix X contains in its
second column the observation times (the first
column contains only ones to account for the
intercept). The meaning of the vectors « and f
will be explained in the following paragraphs.
Batch #j is coded through the vector z;; these
vector are extracted from the matrix of dimen-
sions k x (k—1)

0 0 0
1 0 0
0 0 ... 1

Note that this is an identity matrix I, ; .
expanded with a first row of zeros. Thus, each
observation from batch # 1 is identified by the
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vector z; =[0, 0,...0], from batch # 2 by z, =1,
0,...0], and so on. Therefore, for batch # 1 the
model is reduced to

yi=X/p (@)

where y, is the vector containing the observations
from batch # 1, and therefore the vector B’ = [f,,
f1] corresponds to the intercept and slope of this
first batch. For the remaining batches, the result-
ing equation is

Y=ot o D)+ B+, )x, j>2 (3)

where x; is the vector corresponding to sampling
times for batch # j. Therefore, the first half of the
elements of vector a are the differences of inter-
cepts between batch 1 and batches 2, 3,...k, and
the second half of elements of vector o the differ-
ences in the slopes.

As long as the model in Eq. (1) corresponds to
the linear one, and assuming the independence,
normality and homogeneity of experimental er-
rors, least squares estimation of the vector [Bla]’ is
done as usually. Let the matrix C equal to the
design matrix (Appendix A). The estimates of the
model parameters, [b|a]’, is computed through the
equation,

b
<a> =0~ 'Cy “4)

The variance—covariance matrix of the esti-
mates, V, is done by

a
V =
COV<b

) =5 C) ! (5)
being s> the mean square of the residuals, the
estimate of the variance error, and computed
from

k  n;
PPN
2 _J=11= 6
g N—2k ©
where j; is the predicted value for the observation
# 1 for batch #. Intercepts and slopes for each
batch can also be computed as can be deduced
from Eq. (3), and their variances from the expres-
sion z;Vz, being V the covariance matrix of

model estimates (Eq. (5)) and z; the vector for
coding batch #;/ defined previously. Confidence
intervals from model parameters are therefore
derived from Eq. (5); confidence interval for indi-
vidual batches can also be obtained using the
equation

Vi Ela— o n—2 S[€(C C) '¢yl'?

where ¢, is the vector [1, x, z]’, x; the sampling
time corresponding to the observation y; and
I0 o ~_ 2K s the Student’s statistics with N — 2k
degree of freedom and significative level «. Com-
putations were carried out using Mathematica
software (Wolfran, 1988).

2.1.1. Pooling criteria

According to Ruberg and Stegeman (1991),
maximum allowable difference in slopes between
any two batches, Af, will be equal to the ratio
AC/0, being AC the maximum allowable differ-
ence in drug potency at the end of the shelf-life,
and 0 the desired shelf-life. Therefore, data from
two different batches will be pooled if two condi-
tions are met: first, the 1 — « confidence interval
(1 — o CI) for the difference in slopes is contained
in the interval [—Af, + Af], and second, the
1 — o CI contains the zero value. First condition
assures that the power of the test is enough to
detect a difference between batches considered
relevant while the second one avoids the bias of
pooling batches with different slopes.

3. Experimental
3.1. Analytical method

Quantification of insulin was carried out using
a slight modification of the HPLC method pro-
posed by Farid et al. (1989) (Water system con-
sisting of a pump, model 600E Multisolvent
Delivery System, a UV-VIS detector, a model
490E Programmable Multiwavelenght Detector
and data acquisition software, Maxima 820). A
reversed-phase C-18 column (Delta Pack, 300 A,
8-100 mm, Waters) and 74% 0.2 M sodium sulfate
buffer (pH 2.3)/26% acetonitrile as the eluent at a
flow rate of 1.0 ml/min and UV detection at 214
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nm. Deionized water (MilliQ, Millipore Waters)
was used throughout; all other chemicals and
reagents were HPLC grade. All solvents were
filtered with 0.45 um (pore size) filters (Millipore).
The percentages are given as w/v if not otherwise
stated.

The validation of the analytical method was
done using seven standard solutions of human
insulin (Batch: HO1003, Novo Biolabs) with con-
centrations ranging from 2 to 8 pg/ml in 0.05 M
HCI. Each concentration was replicated four
times. The minimum quantifiable concentration of
human insulin was 2.0 pg/ml. The analysis of
variance of linear regression (ANOVA) of the
calibration line confirms the linearity of the peak
area against the concentration; the coefficient of
variation the predicted concentration was 2.6%
(Hunter and Lamboy, 1981).

Samples from insulin solution preparations (1
ml) were withdrawn from vials and samples were
stored at 4°C until analysis. Insulin samples in
solution were directly diluted with 0.05 M HCI, as
necessary to obtain concentrations within the cali-
bration range. To assess the stability of the ana-
Iytical methods along the stability study, a
standard solution was injected each working day
to construct a control chart; no point was outside
twice the standard deviation. Analytical quality
control chart has been published elsewhere (Oliva
et al., 1996).

Table 1

3.2. Stability study

Two different batches of a commercial human
insulin preparation were used. The vials were
stored protected from light at room temperature
along 2 years. The monthly mean temperature
was 20.7, ranging from 20.0 to 24.2°C. Samples
were taken at regular time intervals; a total of 50
samples were taken.

4. Results and discussion

In order to discuss the principal features of the
proposed method, we have re-analyzed the data
set 1 published by Ruberg and Stegeman (1991)
using the method described above. Estimated
parameters (Eq. (4)) along with their univariate
1-0.05 confidence interval (95% CI) are shown in
Table 1. The results of the analysis of the variance
of regression showed a residual variance s* equal
to 0.1192 with 25 degrees of freedom (df); the
F-test for the origin of variation Regression|b,
was equal to 54.8 with 11 and 25 df, being the null
hypothesis rejected for « < 0.01. From this test we
can conclude that there is at least another model
parameter statistically different from zero, exclud-
ing b,. This previous test must be conducted
because confidence intervals for individual esti-

Model parameter estimates for data published by Ruberg and Stegeman (1991) (N = 37; s2=0.119 with 25 df)?

Model parameter Estimate Standard deviation 95% confidence interval

bl 100.5 0.176 100.1 100.8
b2 —1.515 0.0903 —1.701 —1.329
al 0.167 0.254 —0.356 0.690
a2 —0.357 0.270 —0.914 0.200
a3 —0.038 0.309 —0.675 0.599
a4 —0.0360 0.332 —0.720 0.648
as —0.510 0.332 —1.19 0.174
a6 0.0663 0.153 —0.249 0.381
a7 0.300 0.177 —0.0646 0.665
a8 0.123 0.308 —0.511 0.756
a9 —0.484 0.452 —1.415 0.448
al0 —0.186 0.452 —1.117 0.745

4 Coefficients b1 and 52 correspond to the intercept and slope for batch # 1. Coefficients a2 to a5 correspond to the differences
between the intercepts of batches #2 to # 6 and the intercept for batch # 1. Coefficients a6 to al0 correspond the slope

differences.
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Table 2
Intercepts and slopes estimated from data depicted in Table 1
for each of the six tested batches®

Batch Intercept Slope

#1 100.5 (0.176) —1.515 (0.093)
#2 100.6 (0.182) —1.449 (0.123)
#3 100.1 (0.205) —1.215 (0.152)
#4 100.4 (0.254) —1.392 (0.294)
#5 100.4 (0.281) —1.999 (0.443)
#6 99.98 (0.281) —1.701 (0.443)

# Standard deviations (intro bracket) have been computed
from the variance-covariance matrix.

mates are univariate and they do not account for
the correlation among estimates. As can be seen
in Table 1, 95% CI excluded the zero value only
for b, and b,; this means that the drug is effec-
tively degrading in batch # 1 and that neither the
differences in the intercepts nor in the slopes
between batch # 1 and the remainder ones are
statistically significative.

Table 2 shows the estimates of intercepts and
slopes as well as their standard deviations com-
puted from coefficients in Table 1. These esti-
mates agree with those published by Ruberg and
Stegeman (1991), but differ in the standard devia-
tions where we have assumed that the residual
variance and the degrees of freedom are the same
for every batch. Observed and predicted drug
concentration as well as the lower 95% CI for
each of the six batches are depicted in Fig. 1. It is
important to realize that as for the computation
of the matrix of variance—covariance of estimates
(Eq. (5)), confidence intervals are constructed us-
ing a common variance for the residuals (Eq. (6)).
This has two advantages: first, the confidence
intervals for the predicted drug potencies are
shorter; and second, the influence of outlyers in
the prediction for a particular batch is decreased,
which is particularly important when the number
of points by batch is not large enough to avoid
the bias introduced by the outlyers.

Following the example discussed by Ruberg
and Stegeman (1991) we will set the proposed
shelf-life equal to 3 years and the maximum al-
lowable difference in the predicted concentration
at the end of the shelf-life equal to 3%; these

values give a maximum difference in slopes Af =
+ 1%/year. Data depicted in Table 1 show that
95% CI for the differences in slopes (a¢ to ay,
coefficients) are inside the interval [ — 1, + 1] for
batches # 2, # 3 and # 4, but not for batches
#5 (ag) and # 6 (a,,). In other words, there is a
lack of power in data from these two batches to
show what we have defined as an important dif-
ference in slopes. From Fig. 1 it is readily appar-
ent that these results arise because the sampling
interval (0—1.063 years) and the number of points
(four in both cases) were too short. Concluding,
only data from the first four batches can be
combined to get a joint estimate of the slope.

Fig. 2 and Table 3 show the results for the
insulin solution stability test. Results from the
analysis of variance of regression showed that the
F-test for the source of variation Regression|b,
was equal to 358.9 with 3 and 46 df, large enough
to reject the null hypothesis for « < 0.01. As be-
fore, null hypothesis of no difference between
slopes can be accepted as long as the 95% CI
includes the zero value. Maximum difference be-
tween slopes was set equal to 1.311 x 10~%%
days —!; this values arise assuming the shelf-life
equal to 350 days and maximum difference in
concentration at time equal to shelf-life in 3%. As
can be seen in Table 3, the confidence interval for
the difference between slopes is (—5.83 x 10773,
3.38 x 10 ~%); therefore, we can conclude that this
stability test has power enough to detect the max-
imum difference allowable and at the same time
we conclude the equivalence of both batches.

In summary, statistical analysis of stability tests
must address two problems: first, to test if the
differences between the intercepts and between the
slopes are equal to zero, and therefore data from
different batches can be pooled; second, to test if
the batches can be considered equivalents regard-
ing their degradation rate. This second point
means that the differences between degradation
rates lack practical consequences, and as in bioe-
quivalence trials; this does not mean that the
differences must be equal to zero. It is important
to realize that the requisite of differences between
intercepts and between slopes equal to zero arise
only if we pool the data in order to avoid the bias
introduced by pooling data from batches with
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different degradation rates, regardless of the rele-
vance of such differences. This is why it is neces-
sary to have a powerful test to detect the
alternative hypothesis, and the reason to set «
equal to 0.25 when the homogeneity of slopes is
tested through the ANCOVA!; however, this strat-
egy penalizes the studies involving a large number
of data because the probability to reject the null
hypothesis increases. The method outlined in this
paper overcomes this problem because stability
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equivalence criteria are disclosed from the null
hypothesis testing about slopes and intercepts.
Moreover, this method always makes use of all the
data analyzed to compute a global residual vari-
ance, and therefore, there is not need to pool the
data to increase the number of degrees of freedom
of the residual variance. Last but not least, we can
analysis the data taking into consideration a sta-
bility equivalence criteria, for example, those
defined by Ruberg and Stegeman (1991).
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Fig. 1. Ruberg and Stegeman data. Experimental values, fitted linear model and lower bound one-side 95% confidence interval
computed from joint estimate of residual variance. Ordinate, percent remaining; abscise, time in years.
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Appendix A

The following matrix corresponds to the gen-
eral structure of the matrix C in Eq. (4) (except
for the first row that has been included to facili-
tate this explanation).

Batch # 1
P
4] °°fe0ee
€
> 1,3 1
€
AN
39 o
0:‘ ~
1,2 0.
1,1 T T T 1
0 200 400 600 800
days
1,5 1
N Batch # 2
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Fig. 2. Insulin data. Experimental values, fitted linear model
and lower bound one-side 95% confidence interval computed
from joint estimate of residual variance. Ordinate, concentra-
tion remaining in mg/ml; abscise, time in days.

Table 3

B B oo ay Ay A Oy o Q-2
I t; 0 0 - 0 0 0 e 0

T ty; 0 0 e 0 0 0 e 0

1 t, 1 0 e 0t 0 oo 0
Ity 10 e 0 t,, 0 0

1 t; 0 1 e 0 0ty e 0

I oty 0 1 e 0 0ty e 0
Ity 0 0 - 1 0 0 oo tix
1oty 0 0 oo 1 0 0 e to i

First column contains only ones, and the sec-
ond one the sampling times for the k batches,
from the first sampling time for the batch 1, ¢,
to the last one for batch k, f,,. These two
columns account for the intercept, f,, and the
slope, f3,, of the first batch. The columns headed
with o, o, «,_,, account for the differences
between the intercepts of the batches 2, 3...k and
the intercept of the batch # 1. Column headed
with o, contains ones in those position corre-
sponding to sampling times for batch # 2 and
zero elsewhere; column headed with o, contains

Model parameter estimates for case II, insulin solution (N = 50; s = 3.065 x 10~* with 46 df)?

Model parameter Estimate Standard deviation 95% confidence interval

b, 1.47 6.79x 1073 1.46 1.48

b, —3.69x107* 1.62x1073 —4.02x107* —337x10~%
a 9.21x 1073 9.61x1073 —1.01x1072 2.86x 1072
a, 1.22x 1073 2.29x 1073 —5.83%x107° 3.38x107°

# Coefficients b, and b, correspond to the intercept and slope for batch # 1. Coefficients ¢, and a, correspond to the differences
in intercept and slope, respectively.
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ones in those position corresponding to sampling
times for batch # 3 and zero elsewhere, and so on
until column headed with o, ;.

Columns headed with «, to «,., _, accounts for
the differences between the slopes of batch 2, 3...k
and the slope of the first batch. Column headed
with o, contains the sampling times of the batch
# 2 in those positions corresponding to the sam-
pling times of this batch. The same pattern is
followed for the remaining columns.

If we are using standard statistical software or a
multiple regression tool in a spreadsheet to do the
calculations, we can omit the first column because
the default models include the calculation of the
intercept.
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